Py %
O‘I’ITAN

API| Technical Reference for TITAN
TTCN-3 Test Executor

Jen! Balaskd

Version 6/198 17-CRL 113 200/7, Rev. A, 2020-05-29

Table of Contents

1. Introduction
1.1. Overview
1.2. Target Groups
1.3. Typographical Conventions
2. Test Ports
2.1. Generating the Skeleton
2.2. Message-based Example
2.3. Procedure-based Example
2.4. Test Port Functions
2.4.1. Constructor and Destructor
2.4.2. Parameter Setting Function
2.4.3. Map and Unmap Functions
2.4.4. Start and Stop Functions
2.4.5. Outgoing Operations

2.4.6. Incoming Operations

2.4.7. Additional Functions and Attributes

2.5. Support of address Type
2.6. Provider Port Types
2.7. Tips and Tricks
2.7.1. Logging
2.7.2. Error Handling
2.8. Setting timestamps
2.8.1. Incoming operations
2.8.2. Outgoing operations
3. External Classes
3.1. Example
4. Logger Plug-ins
4.1. Implementing Logger Plug-ins
4.2. Building Logger Plug-ins
4.3. Event Handling
4.4. Execution
5. Encoding and Decoding
5.1. The Common API
5.1.1. TTCN_EncDec
5.1.2. TTCN_Buffer

5.1.3. Invoking the Coding Functions

5.2. BER
5.2.1. Error Situations

NN W NN

A M DM D W W W W W W W W W W WwwLwdhwdMDhDhDhoeD oD EPEPRPRPRERPRPR
W W N O 00 0 00 N N OO0 O 01 W W kP P O W © © Ul W N 0 0 N & W N P

5.2.2. API 44

5.2.3. Example 45
5.3. RAW 45
5.3.1. Error Situations 46
5.3.2. API 46
5.3.3. Example a7
54. TEXT A8
5.4.1. Error Situations 49
5.4.2. API 49
5.4.3. Example 49
5.5. XML Encoding (XER) 50
5.5.1. Error Situations 51
5.5.2. API 51
5.5.3. Example 52
5.6. JSON 52
5.6.1. Error Situations 54
5.6.2. API 54
5.6.3. Example 54
5.7. OER 55
5.7.1. Error Situations 55
5.7.2. API 56
5.7.3. Example 56

. Mapping TTCND3 Data Types to C++ Constructs 58
6.1. Mapping of Names and Identifiers 58
6.2. Namespaces 59
6.3. Predefined TTCND3 Data Types 59
6.3.1. Integer 59
6.3.2. Float 62
6.3.3. Boolean 64
6.3.4. Verdicttype 66
6.3.5. Bitstring 67
6.3.6. Hexstring 71
6.3.7. Octetstring 75
6.3.8. Char 80
6.3.9. Charstring 80
6.3.10. Universal char 86
6.3.11. Universal charstring 86
6.3.12. Object Identifier Type 95
6.3.13. Component References 97
6.3.14. Empty Types 98

6.4. Compound Data Types 99

6.4.1. Record and Set Type Constructs 100

6.4.2. Union Type Construct 104
6.4.3. Record of Type Construct 106
6.4.4. Set of Type Construct 110
6.4.5. Enumerated Types 110
6.4.6. The address Type 113
6.5. Predefined Functions 113
6.5.1. Integer to character 113
6.5.2. Character to integer 114
6.5.3. Integer to universal character 114
6.5.4. Universal character to integer 114
6.5.5. Bitstring to integer 114
6.5.6. Hexstring to integer 114
6.5.7. Octetstring to integer 114
6.5.8. Charstring to integer 114
6.5.9. Integer to bitstring 115
6.5.10. Integer to hexstring 115
6.5.11. Integer to octetstring 115
6.5.12. Integer to charstring 115
6.5.13. Length of string Type 115
6.5.14. Number of elements in a structured type 115
6.5.15. The IsPresent Function 115
6.5.16. The IsChosenFunction 115
6.5.17. The regexp Function 116
6.5.18. Bitstring to charstring 116
6.5.19. Hexstring to charstring 116
6.5.20. Octetstring to character string 116
6.5.21. Character string to octetstring 116
6.5.22. Bitstring to hexstring 116
6.5.23. Hexstring to octetstring 116
6.5.24. Bitstring to octetstring 116
6.5.25. Hexstring to bitstring 117
6.5.26. Octetstring to hexstring 117
6.5.27. Octetstring to bitstring 117
6.5.28. Integer to float 117
6.5.29. Float to integer 117
6.5.30. The Random Number Generator Function 117
6.5.31. The Substring Function 117
6.5.32. Character string to float 118
6.5.33. The Replace Function 118

6.5.34. Octetstring to character string 118

6.5.35. Character string to octetstring 118

6.5.36. The DecomposEunction 118
6.5.37. Additional Non-Standard Functions 119

6.6. Using the Signature Classes 119
6.6.1. The Representation of the Input Parameters 120
6.6.2. The Output Parameters and Return Value 120
6.6.3. Representation of Signature Exceptions 121

6.7. Object references 122
7. Tips & Troubleshooting 124
7.1. Migrating Existing C++ Code to the Naming Rules of Version 1.7 124
7.2. Using External C++ Functions in TTCND3 Test Suites 124
7.2.1. Example TTCNB3 Module (MyExample.ttcn) 125

7.3. Logging in Test Ports or External Functions 126
7.3.1. Unbuffered Mode 126
7.3.2. Buffered Mode 127
7.3.3. Logging Format of TTCN-3 Values and Templates 129
7.3.4. Examples 130

7.4. Error Recovery during Test Execution 131
7.5. Using UNIX Signals 131
7.6. Mixing C and C++ Modules 131

8. References 133

9. Abbreviations 134

Abstract

This document describes detailed information on the TITAN Application Programming Interface
(API) on C++ level, advanced TTCNB3 programming, and background information on the TITAN
TTCND3 Test Executor project.

Copyright

Copyright (c) 2000-2020 Ericsson Telecom AB
All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html
Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson shall have no liability for any error or damage of
any kind resulting from the use of this document.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. Introduction

1.1. Overview

This document describes the TITAN API on C++ level. It is intended for users who write test port
implementation, external function implementation in language C++ and want to use the available
resources of TITAN.

Detailed information can be found on the following topics:

¥ test ports, the communication link between the TITAN Executor and System Under Test (SUT);
¥ built-in encoding and decoding functions;
¥ TTCN-3 data mapping to C++ constructs;

¥ troubleshooting for common TTCN-3 related issues and problems.

1.2. Target Groups

This document is intended for advanced users of the TITAN APl on C++ level.

1.3. Typographical Conventions

This document uses the following typographical conventions:

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
O+0 to represent key combinations. For example, Ctrl+Click

The '/' character is used to denote a menu and sub-menu sequence. For example, File / Open .

Monospacedfont is used represent system elements such as command and parameter names,
program names, path names, URLSs, directory names and code examples.

Bold monospacedfont is used for commands that must be entered at the Command Line Interface
(CLI), For example, ttcn3_start

Chapter 2. Test Ports

The C++ source code generated by the Compiler is protocol independent, that is, it does not contain
any device specific operations. To provide the connection between the executable test suite and
SUT, that is, the physical interface of the test equipment ', a so-called Test Port is needed.

The Test Port is a software library written in C++ language, which is linked to the executable test
program. It maps the device specific operations to function calls specified in an API. This chapter
describes the Test Port API in detalils.

2.1. Generating the Skeleton

The functions of Test Ports must be written by the user who knows the interface between the
executable test suite and the test equipment. In order to make this development easier, the
Compiler can generate Test Port skeletons. A Test Port belongs to one certain TTCNB3 port type, so
the skeleton is generated based on port type definitions.

A Test Port consists of two parts. One part is generated automatically by the Compiler, and it is put
into the generated C++ code. The user has nothing to do with this part.

The other part is a C++ class, which is written mainly by the user. This class can be found in a
separate C++ header and source file (their suffixes are .hh and .cc, respectively). The names of the
source files and the C++ class are identical to the name of the port type. Please note that the name
mapping rules described in Mapping of Names and Identifiers also apply to these class and file
names.

During the translation, when the Compiler encounters a port type definition and the bt command
line switch is used, it checks whether the header and source files of Test Port exist in its working
directory. If none of them can be found there, the compiler generates the skeleton header and
source files for the corresponding test port automatically. This means, once you have generated

(and possibly modified) a skeleton, it will never be overwritten. If you want to re-generate the
skeleton, you must rename or remove the existing one.

If the list of message types/signatures of a TTCN-3 port type changes, the list of the Test Port class
member functions also needs to change. If the Test Port skeleton has been generated, it will not be
modified, resulting in build errors (C++ compile errors like "cannot declare variable of abstract
type"/"virtual functions are pure”, or linker errors). In this case, the Test Port skeleton files should

be renamed/moved, the skeleton generated, and any user-written code should be copied back into
the newly generated source files.

If you have defined a TTCND3 port type that you intend to use for internal communication only
(that is, for sending and receiving messages between TTCND3 test components), you do not need to
generate and compile an empty Test Port skeleton for that port type. Adding the attribute with
{extension "internal"} to the port type definition in the TTCND3 module disables the generation
and use of a Test Port for the port type.

In this case you must not link the object file obtained from a previous Test Port
skeleton to your executable test suite.

WARNING

In the following we introduce two port type definitions: one for a message based and another one
for a procedure based port. In our further examples we will refer to the test port skeletons
generated according to these definitions given within the module called MyExample

2.2. Message-based Example

The definition of MyMessagePort

type port MyMessagePort message

{

E in octetstring;
E out integer;
E inout charstring;

|3

That is, the types integer and charstring can be sent, and octetstring and charstring can be received
on port MyMessagePort

The generated skeleton header file (thatis, MyMessagePort.hpwill look as follows:

/I This Test Port skeleton header file was generated by the
/I TTCN-3 Compiler of the TTCN-3 Test Executor version CRL 113 200/7 R1A
/I for U-ERICSSON\ethbaat (ethbaat@HU-00000670) on Wed May 11 14:49:55 2020

/I Copyright (c) 2000-2020 Ericsson Telecom AB

/l ' You may modify this file. Add your attributes and prototypes of your
/ member functions here.

#ifndef MyMessagePort HH
#define MyMessagePort_HH

#include "MyExample.hh"

namespace MyExample {

class MyMessagePort : public MyMessagePort BASE {
public:

MyMessagePort(const char *par_port_name = NULL);
~MyMessagePort();

m m

E void set_parameter(const char *parameter_name,
E const char *parameter_value);

E /* void Handle_Fd_Event(int fd, boolean is_readable,

E boolean is_writable, boolean is_error); */

E void Handle_Fd_Event_Error(int fd);

E void Handle_Fd_Event_Writable(int fd);

E void Handle_Fd_Event_Readable(int fd);

E /* void Handle_Timeout(double time_since_last_call); */
Y

void user_map(const char *system_port, Map_Params& params);
void user_unmap(const char *system_port, Map_Params& params);

E void user_start();
E void user_stop();

void outgoing_send(const INTEGER& send_par);
void outgoing_send(const CHARSTRING& send_par);

[T [T

—

} I* end of namespace */

#endif

And the generated skeleton source file, that is, = MyMessagePort.ccwill be the following:

/I This Test Port skeleton source file was generated by the

/I TTCN-3 Compiler of the TTCN-3 Test Executor version CRL 113 200/7 R1A
/I for U-ERICSSON\ethbaat (ethbaat@HU-00000670) on Wed May 11 14:49:55 2020

/I Copyright (¢) 2000-2020 Ericsson Telecom AB

/I 'You may modify this file. Complete the body of empty functions and
/I add your member functions here.

#include "MyMessagePort.hh"
namespace MyExample {

MyMessagePort::MyMessagePort(const char *par_port_name)

E : MyMessagePort BASE(par_port_name)
{

}

MyMessagePort::~MyMessagePort()
{

}

void MyMessagePort::set_parameter(const char * /*parameter_name*/,
E const char * [*parameter_value*/)

{
}

[*void MyMessagePort::Handle_Fd_Event(int fd, boolean is_readable,
E boolean is_writable, boolean is_error) {}*/

void MyMessagePort::Handle_Fd_Event_Error(int /*fd*/)
{

}

void MyMessagePort::Handle_Fd_Event_ Writable(int /*fd*/)
{

}

void MyMessagePort::Handle_Fd_Event Readable(int /*fd*/)
{

}

/*void MyMessagePort::Handle_Timeout(double time_since_last_call) {}*/

void MyMessagePort::user_map(const char * /*system_port*/, Map_Params& /*params*/)

{

}

void MyMessagePort::user_unmap(const char * /*system_port*/, Map_Paramsé& /*params*/)

{
}

void MyMessagePort::user_start()

{
}

void MyMessagePort::user_stop()

{
}

void MyMessagePort::outgoing_send(const INTEGER& /*send_par*/)
{

}

void MyMessagePort::outgoing_send(const CHARSTRING& /*send_par*/)
{

}

} I* end of namespace */

2.3. Procedure-based Example

The definition of MyProcedurePortin module MyExampte

type port MyProcedurePort procedure
{

E in inProc;
E out outProc;
E inout inoutProc;

|3

The signature definitions are imported from a module called MyExamplenoblock is not used and
exceptions are used so that every member function of the port class is generated for this example.

If the keyword noblock is used the compiler will optimize code generation by not generating
outgoing reply, incoming reply member functions and their argument types. If the signature has no
exception outgoing raise, incoming exception member functions and related types will not be
generated.

The port type MyProcedurePort can handle call , getreply and catch operations referencing the
signatures outProc and inoutProc , and it can handle getcall , reply and raise operations referencing
the signatures inProc and inoutProc .

The generated skeleton header file (thatis, MyProcedurePort.hh) will look as follows:

/I This Test Port skeleton header file was generated by the
/I TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pre4 build 4
/Il for Csaba Feher (ecsafeh@ehubuux110) on Tue Jul 29 18:53:35 2008

/I Copyright (c) 2000-2020 Ericsson Telecom AB

/l ' You may modify this file. Add your attributes and prototypes of your
/ member functions here.

#ifndef MyProcedurePort HH
#define MyProcedurePort_ HH

#include "MyExample.hh"

namespace MyExample {

class MyProcedurePort : public MyProcedurePort BASE {
public:

MyProcedurePort(const char *par_port_ name = NULL);
~MyProcedurePort();

m m

E void set_parameter(const char *parameter_name,
E const char *parameter_value);

E /* void Handle_Fd_Event(int fd, boolean is_readable,

E boolean is_writable, boolean is_error); */

E void Handle_Fd_Event_Error(int fd);

E void Handle_Fd_Event_Writable(int fd);

E void Handle_Fd_Event_Readable(int fd);

E /* void Handle_Timeout(double time_since_last_call); */
Y

void user_map(const char *system_port, Map_Paramsé& params);
void user_unmap(const char *system_port, Map_Params& params);

E void user_start();
E void user_stop();

void outgoing_call(const outProc_call& call_par);

void outgoing_call(const inoutProc_call& call_par);
void outgoing_reply(const inProc_reply& reply_par);
void outgoing_reply(const inoutProc_reply& reply_par);

T [T [T [T

—

} I* end of namespace */

#endif

The generated skeleton source file for ~ MyProcedurePort (that is, MyProcedurePort.cc) will be the
following:

/I This Test Port skeleton source file was generated by the

/I TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pre4 build 4
/Il for Csaba Feher (ecsafeh@ehubuux110) on Tue Jul 29 18:53:35 2008
/I Copyright (c) 2000-2020 Ericsson Telecom AB

/I 'You may modify this file. Complete the body of empty functions and
/l add your member functions here.

#include "MyProcedurePort.hh"
namespace MyExample {

MyProcedurePort::MyProcedurePort(const char *par_port_name)
E : MyProcedurePort_BASE(par_port_name)

{
}

MyProcedurePort::~MyProcedurePort()
{

}

void MyProcedurePort::set_parameter(const char *parameter_name,
E const char *parameter_value)

{
}

/*void MyProcedurePort::Handle_Fd_Event(int fd, boolean is_readable,
E boolean is_writable, boolean is_error) {}*/

void MyProcedurePort::Handle_Fd_Event_Error(int fd)
{

}

void MyProcedurePort::Handle_Fd_Event Writable(int fd)
{

}

void MyProcedurePort::Handle_Fd_Event_Readable(int fd)
{

}

/*void MyProcedurePort::Handle_Timeout(double time_since_last_call) {}*/

void MyProcedurePort::user_map(const char *system_port, Map_Params& params)

{
}

void MyProcedurePort::user_unmap(const char *system_port, Map_Params& params)

{
}

void MyProcedurePort::user_start()

{
}

void MyProcedurePort::user_stop()

{
}

void MyProcedurePort::outgoing_call(const outProc_call& call_par)

{
}

void MyProcedurePort::outgoing_call(const inoutProc_call& call_par)

{
}

void MyProcedurePort::outgoing_reply(const inProc_reply& reply_par)
{

}

void MyProcedurePort::outgoing_reply(const inoutProc_reply& reply_par)

{
}

} /I* end of namespace */

2.4. Test Port Functions

This section summarizes all possible member functions of the Test Port class. All of these functions
exist in the skeleton, but their bodies are empty.

The identical functions of both port types are:

¥ the constructor and the destructor

11

¥ the parameter setting function
¥ the map and unmap function
¥ the start and stop function
¥ descriptor event and timeout handler(s)
¥ some additional functions and attributes
The functions above will be described using an example of message based ports (MyMessagePorialso

introducing the functions specific to message based port types). Using these functions is identical
(or very similar) in procedure based Test Ports.

Functions specific to message based ports:

¥ send functions: outgoing send

¥ incoming functions: incoming message

¥ Functions specific to procedure based ports:

¥ outgoing functions: outgoing call, outgoing reply, outgoing raise

¥ incoming functions: incoming call, incoming reply, incoming exception

Both test port types can use the same logging and error handling mechanism, and the handling of
incoming operations on port MyProcedurePortis similar to receiving messages on port MyMessagePort
(regarding the event handler).

2.4.1. Constructor and Destructor

The Test Port class belongs to a TTCND3 port type, and its instances implement the functions of the
port instances. That is, each Test Port instance belongs to the port of a TTCNBD3 test component. The
number of TTCND3 component types, port types and port instances is not limited; you may have
several Test Port classes and several instances of a given Test Port class in one test suite.

The Test Port instances are global and static objects. This means, their constructor and destructor is
called before and after the test execution (that is, before the main function starts and after the main
function finishes). The name of a Test Port object is composed of the name of the corresponding
component type and the name of the port instance within the component type.

In case of parallel test execution, each TTCND3 test component process has its own Test Port
instances of all ports defined in all component types within the entire test suite. Of course, only the
Test Ports of the active component type are used, the member functions of other inactive Test Port
instances (except constructor and destructor) will never be called. Since all Test Port instances are
static, their constructor and destructor is called only once on each host and in the Host Controller
process (outside its main function). The test component processes (that is, the child processes of
Host Controller) will get a copy of the initialized Test Port instances and no constructor will be
called again.

The Test Port class is derived from an abstract base class which can be found in the generated code.
The base class implements, for instance, the queue of incoming messages.

The constructor takes one parameter containing the name of the port instance in a NUL character

12

terminated string. This string shall be passed further to the constructor of the base class as it can be
found in the skeleton code. The default argument for the test port name is a NULL pointer, which is
used when the test port object is a member of a port array.

In case of port arrays the name of the test port is set after the constructor is
completed. So the name of the test port should not be used in the constructor.
The port name is always set correctly when any other member function is
called.

WARNING

The destructor does nothing by default. If some dynamically allocated attributes are added to the
test port class, one should free the memory and release all resources in the destructor.

As the constructor and the destructor are called outside of main function, be
careful when writing them. For instance, there is no way for error recovery;
exit(3) call may result in a segmentation fault. If file descriptors are opened
(and kept opened) here, the fork(2) system call of Host Controller will only
multiply the file descriptors and not the kernel file structure. Therefore system
and library calls should be avoided here.

WARNING

2.4.2. Parameter Setting Function

Test Port parameters) shall contain information which is independent from the TTCN3 test suite.
These values shall not be used in the test suite at all. You can define them as TTCND3 constants or
module parameters, but these definitions are useless and redundant, and they must always be
present when the Test Port is used.

For instance, using Test Port parameters can be used to convey configuration data (that is, some
options or extra information that is necessary for correct operation) or lower protocol layer
addresses (for example, IP addresses).

Test Port parameters shall be specified by the user of executable tests in section
[TESTPORT_PARAMETEBR$e run-time configuration file (see section [TESTPORT_PARAMETHRS]
ProgrammerOs Technical Reference). The parameters are maintained for each test port instance
separately; wildcards can be used as well. In the latter case the parameter is passed to all Test Port
matching the wildcard.

Each Test Port parameter must have a name, which must be unique within the Test Port only. The
name must be a valid identifier, that is, it must begin with a letter and must contain
alphanumerical characters only.

All Test Port parameter values are interpreted by the test executor as character strings. Quotation
marks must be used when specifying the parameter values in the configuration file. The
interpretation of parameter values is up to you: you can use some of them as symbolic values,
numbers, IP addresses or anything that you want.

Before the test execution begins, all parameters belonging to the Test Port are passed to the Test
Port by the runtime environment of the test executor using the function set_parameter. It is a virtual
function, that is, this function may be removed from the header and source file if there are no
parameters. Its default ancestor does nothing and ignores all parameters.

13

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

Each parameter is passed to the Test Port one-by-one separately ', the two arguments of

set_parameter contain the name and value of the corresponding parameter, respectively, in NUL
character terminated strings. If the parameter values are needed in further operations, backup
copies must be made of them because the string will disappear after the calling function returns.

It is warmly recommended that the Test Port parameter handling functions be fool-proof. For
instance, the Test Port should produce a proper error message (for example by calling TTCN_erroj if
a mandatory parameter is missing instead of causing segmentation fault. Repeated setting of the
same parameter should produce warnings for the user (for example by using the function
TTCN_warningand not memory leaks.

On the MTC, in both single and parallel modes, the handling of Test Port parameters

is a bit different from that on PTCs. The parameters are passed only to active ports,

but the component type of MTC (thus the set of active ports) depends on the runs on
clause of the test case that is currently being executed. It would be difficult for the
runtime environment to check at the beginning of each test case whether the
corresponding MTC component type has already been active during a previous test
case run. Therefore all Test Port parameters belonging to the active ports of the MTC

are passed to the set_parameter function at the beginning of every test case. The Test
Ports of MTC shall be prepared to receive the same parameters several times (with

the same values, of course) if more than one test case is being executed.

NOTE

If system related Test Port parameters are used in the run-time configuration file (that is, the
keyword system is used as component identifier), the parameters are passed to your Test Port
during the execution of TTCND3 mapoperations, but before calling your user_mapfunction. Please
note that in this case the port identifier of the configuration file refers to the port of the test system
interface that your port is mapped to and not the name of your TTCND3 port.

The name and exact meaning of all supported parameters must be specified in the user
documentation of the Test Port.

2.4.3. Map and Unmap Functions

The run-time environment of the TTCNDP3 executor knows nothing about the communication
towards SUT, thus, it is the userOs responsibility to establish and terminate the connection with SUT.
The TTCND3 language uses two operations to control these connections, mapand unmap

For this purpose, the Test Port class provides two member functions, user_mapand user_unmapThese
functions are called by the test executor environment when performing TTCND3 mapand unmap
operations, respectively.

The mapand unmapoperations take two pairs of component references and ports as arguments.
These operations are correct only if one of the arguments refer to a port of a TTCND3 test
component while the other port corresponds to SUT. This aspect of correctness is verified by the
run-time environment, but the existence of a system port is not checked.

The port names of the system are converted to NULcharacter terminated strings and passed to
functions user_map and user_unmapas parameters. Unlike other identifiers, the underscore
characters in these port names are not translated.

14

If these system port names should be reused later, the entire strings (and not only the pointers)
must be saved in the internal memory structures since the string values will disappear after the
user_mapor user_unmaginishes.

in TTCND3 it is not allowed to map a test component port to several system ports at
the same time. The run-time environment, however, is not so strict and allows this
to handle transient states during configuration changes. In this case messages can

NOTE not be sent to SUT even with explicit addressing, but the reception of messages is
permitted. When putting messages into the input queue of the port, it is not
important for the test executor (even for the TTCND3 language) which port of the
system the message is received from.

The execution of TTCND3 test component that requested the mapping or unmapping is suspended
until your user_mapor user_unmagunctions finish. Therefore it is not allowed to block unnecessarily
the test execution within these functions.

When the Test Port detects an error situation during the establishment or termination of the
physical connection towards the SUT, the function TTCN_errorshall be used to indicate the failure. If
the error occurs within ~ user_mapthe run-time environment will assume that the connection with

SUT is not established thus it will not call user_unmapto destroy the mapping during the error
recovery procedure. If user_magfails, it is the Test Port writerOs responsibility to release all allocated
resources and bring the object variables into a stable state before calling TTCN_error Within
user_unmapghe errors should be handled in a more robust way. After a minor failure it is better to

issue a warning and continue the connection termination instead of panicking. TTCN_errorshall be
called only to indicate critical errors. If user_unmapis interrupted with an error the run-time
environment assumes that the mapping has been terminated, that is, user_unmapwill not be called
again.

if either user_mapor user_unmapfails, the error is indicated on the initiator test
NOTE component as well; that is, the respective map or unmapoperation will also fail and
error recovery procedure will start on that component.

Parameters of the Map and Unmap Functions

Parameters can be sent to the user_mapand user_unmapfunctions from TTCN code using the param
clause of the mapand unmapperations.

The 'user_map™ and user_unmagunctions have a parameter of type = Map_Paramsvhich contains the
string representations of the in and inout parameters of the mapunmapoperation. The string
representations of out parameters are empty strings (as these are considered as being unboundat the
beginning of the mapunmapoperation). After the user_mapor user_unmapfunction ends and the
mapping/unmapping is concluded, the final values (string representations) of out and inout
parameters in the Map_Paramasbject are sent back to the mapping/unmapping requestor.

The following member functions can be used to obtain or set data in the Map_Paramabject:

unsigned int get_nof_params() const

15

Returns the number of parameters in the object. This will either be zero (if the mapor unmap
operation had no paramclause) or the number of parameters specified in the system port type
definition®s map paranor unmap paranclause.

const CHARSTRING& get_param(unsigned int p_index) const

Returns the string representation of the parameter at index p_index. This method shall be used to
retrieve the values of in and inout parameters. The parameter indices start at 0. The order of the
parameters is the same as their order of declaration. Default values of parameters are
automatically set by the runtime environment before the user_mapuser_unmapcall. The string
representations retrieved with this function can be converted back to the parameterOs TTCN-3 type

with the predefined function string_to_ttcn

void set_param(unsigned int p_index, const CHARSTRING& p_param)

Sets the string representation of the parameter at index p_index to the string p_param This method
shall be used to set the final values of out and inout parameters. The string representation of a
TTCN-3 value can be obtained using the predefined function ttcn_to_string . If the final value of an
out or inout parameter is an empty string, then the variable used as parameter will remain
unchanged. Otherwise its new value will be calculated by applying string_to_ttcn on the string
value set in the user_mapor user_unmapfunction (this could cause dynamic test case errors if the
string representation is invalid).

Usage example:

Port type:

type port MyPort message {

E ..

E map param(in MylnParType in_par, inout MylnOutParType inout_par, out MyOutParType
out_par)

}

user_mapfunction in port implementation:

16

void MyPort::user_map(const char * system_port, Map_Params& params)

if (params.get_nof_params() != 0) {
/I there were map parameters

m m

/I extract 'in' and ‘'inout’ parameters
MylInParType in_par;
string_to_ttcn(params.get_param(0), in_par);
MyInOutParType inout_patr;
string_to_ttcn(params.get_param(1), inout_par);
MyOutParType out_par; // remains unbound

[T [T [T [T [Ty [T

/l do mapping

m m»

/[update 'out' and 'inout' parameters
params.set_param(l, ttcn_to_string(inout_par));
params.set_param(2, ttcn_to_string(out_par));

}

else {
I/l there were no map parameters

[T T [T [T TP TP

/l do mapping

> [T> [T> [T»

2.4.4. Start and Stop Functions

The Test Port class has two member functions: user_start and user_stop. These functions are called
when executing port start and port stop operations, respectively. The functions have no
parameters and return types.

These functions are called through a stub in the base class, which registers the current state of the
port (whether it is started or not). So user_start will never be called twice without calling user_stop
or vice versa.

From version 1.2.pl0 on (according to the latest TTCND3 standard) all ports of
test components are started implicitly immediately after creation. Such
operations must not be put ina user_start function blocking the execution for
a longer period. This not only hangs the new PTC but the also component that
performed the create operation (usually the MTC). All ports are stopped at the
end of test cases or at PTC termination, even if stop statements are missing.

WARNING

In functions user_start and user_stop the device should be initialized or shut down towards SUT
(that is, the communications socket). Also the event handler should be installed or uninstalled (see
later).

17

2.4.5. Outgoing Operations

Outgoing operations are send (specific to message based ports); call , reply , and raise (specific to
procedure based ports).

Send Functions

The Test Port class has an overloaded function called outgoing_send for each outgoing message type.
This function will be called when a message is sent on the port and it should be routed to the
system (that is, SUT) according to the addressing semantics) of TTCND3. The messages (implicitly or
explicitly) addressed to other test components are handled inside the test executor; the Test Ports
have nothing to do with them. The function outgoing_send will be also called if the port has neither
connections nor mappings, but a message is sent on it.

The only parameter of outgoing_send contains a read-only reference to the message in the internal
data representation format of the test executor. The access methods for internal data types are
described in XML Encoding (XER) . The test port writer should encode and send the message
towards SUT. For information on how to use the standard encoding functions like BER, please
consult Logger Plug-ins . Sending a message on a not started port causes a dynamic test case error.
In this case outgoing_send will not be called.

Call, Reply and Raise Functions

The procedure based Test Port class has overloaded functions called outgoing_call , outgoing_reply
and outgoing_raise for each call , reply and raise operations, respectively. One of these functions
will be called when a port-operation is addressing the system (that is, SUT using the to system
statement).

The only parameter of these functions is an internal representation of the signature parameters
(and possibly its return value) or the exceptions it may raise. The signature classes are described in
Using the Signature Classes .

2.4.6. Incoming Operations

Incoming operations are receive incoming messages (specific to message based ports); call , reply
and exception (specific to procedure based ports).

Descriptor Event and Timeout Handlers

The handling of incoming messages (or operations) is more difficult than sending. The executable

test program has two states. In the first state, it executes the operations one by one as specified in

the test suite (for example, it evaluates expressions, calls functions, sends messages, etc.). In the
other state it waits for the response from SUT or for a timer to expire. This happens when the
execution reaches a blocking statement, that is, one of a stand-alone receive , done timeout
statements or an alt construct.

After reaching a blocking statement, the test executor evaluates the current snapshot of its timer
and port queues and tries to match it with the reached statements and templates. If the matching
fails, the executor sleeps until something happens to its timers or ports. After waking up, it re-
evaluates its snapshot and tries to match it again. The last two steps are repeated until the executor

18

finds the first matching statement. If the test executor realizes that its snapshot can never match
the reached TTCND3 statements, it causes a dynamic test case error. This mechanism prevents it
from infinite blocking.

The test executor handles its timers itself, but it does not know anything about the communication
with SUT. So each Test Port instance should inform the snapshot handler of the executor what kind
of event the Test Port is waiting for. The event can be either the reception of data on one or more
file descriptors or a timeout (when polling is used) or both of them.

When the test executor reaches a blocking statement and any condition D for which the Test Port

waits D is fulfilled, the event handler will be called. First one has to get the incoming message or
operation from the operating system. After that, one has to decode it (and possibly decide its type).
Finally, if the internal data structure is built, one has to put it into the queue of the port. This can be

done using the member function incoming_messageif it is a message, and using incoming_call ,
incoming_reply or incoming_exception if it is an operation.

The execution must not be blocked in event handler functions; these must return immediately

when the message or operation processing is ready. In other words, always use non-blocking recv()
system calls. In the case when the messages are fragmented (for instance, when testing TCP based
application layer protocols, such as HTTP), intermediate buffering should be performed in the Test

Port class.

Event and timeout handling interface introduced in TITAN version 1.7.pl4

This descriptor event and timeout handling interface is the preferred interface for new Test Port
development.

There are two possibilities to be notified about available events:

¥ Either the Handle_Fd_Evenfunction has to be implemented, or

¥ Handle_Fd_Event Readablédandle_Fd_Event Writable and Handle_Fd_Event_Error

Using Handle_Fd_Evengallows receiving all events of a descripor in one function call. Using the other
three event handler functions allows creating a more structured code.

All these functions are virtual. The unused event handler functions have to be left un-overridden.
(When using the second alternative and the Test Port does not wait for all types of events (readable,
writable, error) the handlers of the events D for which the Test Port does not wait B can be left un-
overridden.)

The following functions can be used to add events to and remove events from the set of events for
which the Test Port waits:

void Handler_Add_Fd(int fd, Fd_Event_Type event_mask = EVENT_ALL);
void Handler_Add_Fd_Read(int fd);

void Handler_Add_Fd_Write(int fd);

void Handler_Remove_ Fd(int fd, Fd_Event_Type event_mask = EVENT_ALL);
void Handler_ Remove_ Fd_Read(int fd);

void Handler_Remove_ Fd_Write(int fd);

19

The first parameter in all of these functions is the file descriptor. Possible values of the event_mask
are EVENT_RBVENT_WHVENT_ERRd combinations of these using bitwise or: "|".

Timeout notification can be received with the Handle_Timeout function. The parameter of the
function indicates the time elapsed in seconds since its last call of this function or the latest
modification of the timer (whichever occurred later).

The timer can be set with the following function:

void Handler_Set_Timer(double call_interval, boolean is_timeout = TRUE,
E boolean call_anyway = TRUE, boolean is_periodic = TRUE);

call_interval is measured in seconds and specifies the time after which the Handle Timeoutfunction
will be called. To stop the timer call_interval value: 0.0 has to be given.

is_timeout specifies if the timer has to be stopped when event handler is called. call_anyway is
meaningful when is_timeout is set to TRUEIn this case call_anyway indicates if the Handle_Timeout
function has to be called when event handler is called before the timer would expire. If call_anyway

is TRUEhe timeout handler will be called after the call of the event handlers and the timer will be
stopped. is_periodic indicates if the timer has to be restarted instead of stopping when timer
expires or event handler is called and is_timeout and call_anyway are both TRUE

Event handler for Test Ports developed for 1.7pl3 and earlier versions of TITAN

There is only one event handler function in each Test Port class called Event_Handler, which is a
virtual member function. The run-time environment calls it when an incoming event arrives. You
can install or uninstall the event handler by calling the following inherited member functions:

void Install_Handler(const fd_set *read_fds, const fd_set *write_fds,
E const fd_set *error_fds, double call_interval);
void Uninstall_Handler();

Install_Handler installs the event handler according to its parameters. It takes four arguments,
three pointers pointing to bitmasks of file descriptors and a timeout value. Some of the parameters
can be ignored, but ignoring all at the same time is not permitted.

The bitmasks are interpreted in the same way as in the select system call. They can be set using the
macros FD_ZER®GD_SE&and FD_CLRf the pointer is NULL, the bitmask is treated as zero. For further
details see the manual page of select(2) or select(3) .

The call interval value is measured in seconds. It means that the event handler function will be
called when the time elapsed since its last call reaches the given value. This parameter is ignored
when its value is set to zero or negative.

If you want to change your event mask parameters, you may simply call the function
Install_Handler again (calling of Uninstall_Handler is not necessary).

Uninstall_Handler will uninstall your previously installed event handler. The stop port operation

20

also uninstalls the event handler automatically. The event handler may be installed or uninstalled
in any Test Port member function, even in the event handler itself.

The prototype of the event handler function is the following:

void Event_Handler(const fd_set *r_fds, const fd_set *w_fds,
E const fd_set *e_fds, double time_since_last_call);

The function Event_Handler has four parameters. The first three of them are pointers to bitmasks of
file descriptors as described above. They are the bitwise AND combination of bitmasks you have
given to Install Handler and the bitmasks given back by the last call of select. They can be useful
when waiting for data from many file descriptors, for example when handling more than one SUT
mappings simultaneously, because there is no need to issue a select call again within the event
handler.

the pointers can be never NULL, they point to a valid memory area even if there are

no file descriptors set in the bitmask. The last parameter contains the time elapsed
since the last call of the event handler measured in seconds. This value is always
calculated even if the call interval has not been set. If the Event_Handleris called the
first time since its last installation, the time is measured from the call of
Install_Handler .

NOTE

Receiving messages

The member function incoming_messageof message based ports can be used to put an incoming
message in the queue of the port. There are different polymorphic functions for each incoming
message type. These functions are inherited from the base class. The received messages are logged
when they are put into the queue and not when they are processed by the test suite “,

In our example the class MyMessagePort BA&ES the following member functions:

incoming_message(const OCTETSTRING& incoming_par);
incoming_message(const CHARSTRING& incoming_par);

Receiving calls, replies and exceptions

Receiving operations on procedure based ports is similar to receiving messages on message based
ports. The difference is that there are different overloaded incoming functions for call, reply and

raise operations called incoming_call , incoming_reply and incoming_exception, respectively. The
event handler (when called) must recognize the type of operation on receiving and call one of these
functions accordingly with one of the internal representations of the signature (see Additional Non-
Standard Functions).

In the example ' the class MyProcedurePort_BASRas the following member functions for incoming
operations:

21

6-mapping_ttcn3_data_types_to_c++_constructs.adoc .pdf#additional-non-standard-functions
6-mapping_ttcn3_data_types_to_c++_constructs.adoc .pdf#additional-non-standard-functions

incoming_call(const MyExample::inProc_call& incoming_par);
incoming_call(const MyExample::inoutProc_call& incoming_par);
incoming_reply(const MyExample::outProc_reply& incoming_par);
incoming_reply(const MyExample::inoutProc_reply& incoming_par);
incoming_exception(const MyExample::outProc_exception& incoming_par);
incoming_exception(const MyExample::inoutProc_exception& incoming_par);

For example, if the event handler receives a call operation that refers to the signature called
inoutProc , it has to fill the parameters of an instance of the class inoutProc_call with the received
data. Then it has to call the function incoming_call with this object to place the operation into the
gueue of the port.

The following table shows the relation between the direction of the message type or signature in

the port type definition and the incoming/outgoing functions that can be used. MyPortin the table
header refers to MyMessagePoror MyProcedurePortin the example depending on the type of the port
(message based or procedure based).

Table 1. Outgoing and incoming operations

MyPort::outgoing_ MyPort BASE::incoming_
send call reply raise message call reply exceptio
n
in n n n n # n n n
message | . "
type
inout # n n n # n n n
in n n # # n # n n
Slgnatur Out n # n n n n # #
e
inout " # # # " # # #

supported

" not supported

2.4.7. Additional Functions and Attributes

Any kind of attributes or member functions may be added to the Test Port. A file descriptor, which
you communicate on, is almost always necessary. Names not interfering with the identifiers
generated by the Compiler can be used in the header file (for example, the names containing one
underscore character). Avoid using global variables because you may get confused when more than
one instances of the Test Port run simultaneously. Any kind of software libraries may be used in the
Test Port as well, but included foreign header files may cause name clashes between the library and
the generated code.

In addition, the following protected attributes of ancestor classes are available:

Table 2. Protected attributes

22

Name Type Meaning

is_started Indicates whether the Test Port
boolean is started.
handler_installed Indicates whether the event
boolean handler is installed.
port_name Contains the name of the Test
const char* Port instance. (NUL character

terminated string)

Underscore characters are not duplicated in port name. In case of port array member instances the
name string looks like this: "Myport_array[5]" .

2.5. Support of address Type

The special user-defined TTCND3 type address can be used for addressing entities inside the SUT on
ports mapped to the system component. Since the majority of Test Ports does not need TTCND3
addressing and in order to keep the Test Port API backward compatible the support of address type
is disabled by default. To enable addressing on a particular port type the extension attribute
"address" must be added to the TTCND3 port type definition. In addition to component references

this extension will allow the usage address values or variables in the to or from clauses and sender
redirects of port operations.

In order to use addressing, a type named address shall be defined in the same TTCNBD3 module as
the corresponding port type. Address types defined in other modules of the test suite do not affect

the operation of the port type. It is possible to link several Test Ports that use different types for
addressing SUT into the same executable test suite.

Test Ports that support SUT addressing have a slightly different API, which is considered when
generating Test Port skeleton. This section summarizes only the differences from the normal API.

In the communication operations the test port author is responsible for handling the address
information associated with the message or the operation. In case of an incoming message or
operation the value of the received address will be stored in the port queue together with the
received message or operation.

The generated code for the port skeleton of message based ports will be the same, except
outgoing_send member function, which has an extra parameter pointing to an ADDRES&lue. With
the example given in Test Port Functions :

void outgoing_send(const INTEGER& send_par,

E const ADDRESS *destination_address);
void outgoing_send(const CHARSTRING& send_par,
E const ADDRESS *destination_address);

If an address value was specified in the to clause of the corresponding TTCND3 send operation the
second argument of outgoing_send points to that value. Otherwise it is set to the NULLpointer. The

23

Test Port code shall be prepared to handle both cases.

The outgoing operations of procedure based ports are also generated in the same way if the address
extension is specified. These functions will also have an extra parameter. Based on our example,
these will have the following form:

void outgoing_call(const MyExample::outProc_call& call_par,

E const ADDRESS *destination_address);

void outgoing_call(const MyExample::inoutProc_call& call_par,

E const ADDRESS *destination_address);

void outgoing_reply(const MyExample::inProc_reply& reply par,

E const ADDRESS *destination_address);

void outgoing_reply(const MyExample::inoutProc_reply& reply_par,

E const ADDRESS *destination_address);

void outgoing_raise(const MyExample::inProc_exception& raise_exception,
E const ADDRESS *destination_address);

void outgoing_raise(const MyExample::inoutProc_exception& raise_exception,
E const ADDRESS *destination_address);

The other difference is in the incoming_messagenember function of class MyMessagePort_ BASEd in
the incoming member functions of class MyProcedurePort_BASEThese have an extra parameter,
which is a pointer to an ADDRES@Ilue. The default value is set the NULL pointer. In our example of
MyMessagePort_ BASE

void incoming_call(const MyExample::inProc_call& incoming_par,

E const ADDRESS *sender_address = NULL);

void incoming_ call(const MyExample::inoutProc_call& incoming_par,

E const ADDRESS *sender_address = NULL);

void incoming_reply(const MyExample::outProc_reply& incoming_par,

E const ADDRESS *sender_address = NULL);

void incoming_reply(const MyExample::inoutProc_reply& incoming_par,

E const ADDRESS *sender_address = NULL);

void incoming_exception(const MyExample::outProc_exception& incoming_par,
E const ADDRESS *sender_address = NULL);

void incoming_exception(const MyExample::inoutProc_exception& incoming_par,
E const ADDRESS *sender_address = NULL);

If the event handler of the Test Port can determine the source address where the message or the
operation is coming from, it shall pass a pointer to the incoming function, which points to a
variable that stores the address value. The given address value is not modified by the run-time
environment and a copy of it is created when the message or the operation is appended to the port
gueue. If the event handler is unable to determine the sender address the default NULLpointer shall
be passed as second argument.

The address value stored in the port queue is used in receive , trigger , getcall , getreply , catch and
check port operations: it is matched with the from clause and/or stored into the variable given in the
sender redirect. If the receiving operation wants to use the address information of the first element

in the port queue, but the Test Port has not supplied it a dynamic testcase error will occur.

24

2.6. Provider Port Types

Test Ports that belong to port types marked with extension attribute “provider" have a slightly
different API. Such port types are used to realize dual-faced ports, the details of which can be found
in section "Dual-faced ports" inthe ~ ProgrammerOs Technical Reference .

The purpose of this APl is to allow the re-use of the Test Port class with other port types marked
with attribute user or with ports with translation capability (Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Configuration
and Deployment Support). The user port types may have different lists of incoming and outgoing
message types. The transformations between incoming and outgoing messages, which are specified
entirely by the attribute of the user port type, are done independently of the Test Port. The Test Port
needs to support the sending and reception of message types that are listed in the provider port

type.

The provider port can be accessed through the port which maps to the port with provider attribute.
The get_provider_port() is a member function of the PORT class:

PORT* get_provider_port();

This function is useful when a reference to the provider type is needed. It returns the provider port
type for user ports and ports with translation capability. Otherwise returns NULL. The function
causes dynamic testcase error when the port has more than one mapping, or the port has both
mappings and connections. The functionOs return value must be manually cast to the correct
provider port type.

This section summarizes only the differences from the normal Test Port API:

¥ The name of the Test Port class is suffixed with the string _PROVIDERfor example
MyMessagePort PROVIDEStead of MyMessagePo)t

¥ The base class of the Test Port is class PORTwhich is part of the Base Library. Please note that
normal Test Ports are also derived from class PORT, but indirectly through an intermediate class
with suffix _BASE

¥ The member functions that handle incoming messages and procedure-based operations (that is
incoming_messageincoming_call , incoming_reply and incoming_exception) must be defined in the
header file as pure virtual functions. These functions will be implemented in various
descendant classes differently.

¥ The Test Port header file must not include the generated header file of the corresponding
TTCNB3 module. The common header file of the Base Library called TTCN3.hh shall be included
instead. The source file of the Test Port may include any header file without restriction.

¥ The member functions of the Test Port may refer to C++ classes that are generated from user-
defined message types and signatures. To avoid compilation failures the declarations of the
referenced classes must be added to the beginning of the header file. At the moment the Test
Port skeleton generator has a limitation that it cannot collect the class declarations from the
port type, so they must be added manually. Please note that if a message type or signature is
imported from another module the corresponding class declaration must be put into the

25

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf
https://www.etsi.org/deliver/etsi_es/202700_202799/202781/01.04.01_60/es_202781v010401p.pdf

appropriate namespace.
The following example shows the generated Test Port skeleton of a provider port type.

Port type definition in TTCND3 :

type port MyProviderPort mixed {
E inout MyMessage, MySignature;
} with { extension "provider" }

Header file MyMessagePort.hh

/I This Test Port skeleton header file was generated by the

/l TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pl0
I/ for Janos Zoltan Szabo (ejnosza@EG70E00202E46JR)

/l on Wed Mar 7 18:14:33 2007

I/l Copyright (c) 2000-2020 Ericsson Telecom AB

/I 'You may modify this file. Add your attributes and prototypes of your
/ member functions here.

#ifndef MyProviderPort HH
#define MyProviderPort_HH

#include <TTCN3.hh>

/I Note: Header file MyExample.hh must not be included into this file!
/I Class declarations were added manually

namespace MyOtherModule {

E // type MyMessageType was imported from MyOtherModule
E class MyMessageType;

}

namespace MyExample {

Il signature MySignature was defined locally

class MySignature_call;

class MySignature_reply;

class MySignature_exception;

class MyProviderPort_PROVIDER : public PORT {

public:

E MyProviderPort_PROVIDER(const char *par_port_name = NULL);
E ~MyProviderPort PROVIDER();

26

E void set_parameter(const char *parameter_name,
E const char *parameter_value);

E void Event_Handler(const fd_set *read_fds,
E const fd_set *write_fds, const fd_set *error_fds,
E double time_since_last_call);

protected:
E void user_map(const char *system_port);
E void user_unmap(const char *system_port);

E void user_start();
E void user_stop();

E void outgoing_send(const MyOtherModule::MyMessage& send_par);

E void outgoing_call(const MySignature_call& call_par);

E void outgoing_reply(const MySignature_reply& reply_par);

E void outgoing_raise(const MySignature_exception& raise_exception):;

E virtual void incoming_message(

E const MyOtherModule::MyMessage& incoming_par) = 0;

E virtual void incoming_call(const MySignature_call& incoming_par) = 0;

E virtual void incoming_reply(const MySignature_reply& incoming_par) = 0;
E virtual void incoming_exception(

E const MySignature_exception& incoming_par) = 0;

|3

} I* end of namespace */

Source file MyMessagePort.cc

/I This Test Port skeleton source file was generated by the

/I TTCN-3 Compiler of the TTCN-3 Test Executor version 1.7.pl0

/[for Janos Zoltan Szabo (ejnosza@EG70E00202E46JR)

/l on Wed Mar 7 18:14:33 2007

/I Copyright (¢) 2000-2020 Ericsson Telecom AB

/I 'You may modify this file. Complete the body of empty functions and
// add your member functions here.

#include "MyProviderPort.hh"
#include "MyExample.hh"

namespace MyExample {

MyProviderPort PROVIDER::MyProviderPort PROVIDER(const char *par_port_name)
E : PORT(par_port_name)

{

}

MyProviderPort PROVIDER::~MyProviderPort PROVIDER()
{

27

}

void MyProviderPort PROVIDER::set_parameter(const char *parameter_name,
E const char *parameter_value)

{

}

void MyProviderPort_ PROVIDER::Event_Handler(const fd_set *read_fds,
E const fd_set *write_fds, const fd_set *error_fds,

E double time_since_last_call)

{

}

void MyProviderPort PROVIDER::user_map(const char *system_port)

{
}

void MyProviderPort PROVIDER::user_unmap(const char *system_port)

{
}

void MyProviderPort_ PROVIDER::user_start()

{
}

void MyProviderPort PROVIDER::user_stop()

{
}

void MyProviderPort PROVIDER::outgoing_send(
E const MyOtherModule::MyMessage& send_par)

{
}

void MyProviderPort_ PROVIDER::outgoing_ call(
E const MySignature_call& call_par)

{
}

void MyProviderPort PROVIDER::outgoing_reply(
E const MySignature_reply& reply_par)

{

}

void MyProviderPort PROVIDER::outgoing_raise(
E const MySignature_exception& raise_exception)

{
}

} I* end of namespace */

2.7. Tips and Tricks

The following sections deal with logging and error handling in Test Ports.

2.7.1. Logging

Test Ports may record important events in the Test Executor log during sending/receiving or
encoding/decoding messages. Such log messages are also good for debugging fresh code.

The Test Port member functions may call the functions of class TTCN_LoggerThese functions are
detailed in Logging in Test Ports or External Functions

If there are many points in the Test Port code that want to log something, it can be a good practice

to write a common log function in the Test Port class. We show here an example function, which
takes its arguments as the standard C function printf and forwards the message to the Test
ExecutorOs logger:

#include <stdarg.h>
/[using in other member functions:
/l'log("The value of i: %d", i);
void MyPortType::log(const char *fmt, ...)
{
E // this flag can be a class member, which is configured through a
E // test port parameter
E if (logging_is_enabled) {
va_list ap;
va_start(ap, fmt);
TTCN_Logger::begin_event(TTCN_DEBUG);
TTCN_Logger::log_event("Example Test Port (%s): ", get_name());
TTCN_Logger::log_event_va_list(fmt, ap);
TTCN_Logger::end_event();
va_end(ap);

== [T [T> [T [T> > [T > [T M

2.7.2. Error Handling

None of the Test Port member functions have return value like a status code. If a function returns
normally, the run-time environment assumes that it has performed its task successfully. The
handling of run-time errors is done in a special way, using C++ exceptions. This simplifies the
program code because the return values do not have to be checked everywhere and dynamically
created complex error messages can be used if necessary.

If any kind of fatal error is encountered anywhere in the Test Port, the following function should be
called:

void TTCN_error(const char *err_msg, E);

29

7-tips_&_troubleshooting.pdf#logging-in-test-ports-or-external-functions

Its parameter should contain the description of the error in a NULterminated string in the format of
printf(3) . You may pass further parameters to TTCN_error if necessary. The function throws an
exception, so it never returns. The exception is usually caught at the end of the test case or PTC
function that is being executed. In case of error, the verdict of the component is set to error and the
execution of the test case or PTC function terminates immediately.

The exception class is called TC_Error. For performance reasons this is a trivial (empty) class, that is,
it does not contain the error message in a string. The error string is written into the log file by
TTCN_errorimmediately. Such type of exception should never be caught or thrown directly. If you
want to implement your own error handling and error recovery routines you had better use your

own classes as exceptions.

If you write your own error reporting function you can add automatically the name of the port
instance to all of your error messages. This makes the fault analysis for the end-users easier. In the
following example the error message will occupy two consecutive lines in the log since we can pass
only one format stringto TTCN_error

void MyPortType::error(const char *msg, ...)

{

E va_list ap;

E va_start(ap, msg);

E TTCN_Logger::begin_event(TTCN_ERROR);

E TTCN_Logger::log_event("Example Test Port (%s): ", get_name());
E TTCN_Logger::log_event_va_list(msg, ap);

E TTCN_Logger::end_event();

E va_end(ap);

E TTCN_error("Fatal error in Example Test Port %s (see above).",
E get_name());

}

There is another function for denoting warnings (that is, events that are not so critical) with the
same parameter list as TTCN_error:

void TTCN_warning(const char *warning_msg, E);

This function puts an entry in the executorOs log with severity TTCN_WARNING contrast to
TTCN_erroy after logging the given message TTCN_warningeturns and your test port can continue
running.

2.8. Setting timestamps

In order to use the timestamp redirects (! timestamp) described in chapter 5 of the TTCN-3 standard
extension TTCN-3 Performance and Real Time Testing (ETSI ES 202 782 V1.3.1,[16]) the test port
writer needs to add extra code to set the timestamps for the incoming and outgoing port operations

of each port with the realtime clause.

30

2.8.1. Incoming operations

The timestamps of incoming port operations (receive, trigger , getcall , getreply , catch and check)
need to be set when the incoming message or procedure is added to the queue.

The member functions incoming_message incoming_call , incoming_reply and incoming_exception
(which add the message/procedure to the queue) have an optional float parameter called
timestamp, if the test port was declared with the realtime clause.

The value given to this parameter will be the one stored in the variable referenced in the
timestamp redirect, if the operation has a timestamp redirect (otherwise the value is ignored).

It is recommended that this parameter be set to the current test system time, which can be queried
with TTCN_Runtime::now()or to a float variable that was set to the current test system time earier in
the function.

Examples:

incoming_message(my_message, TTCN_Runtime::now());

FLOAT reply_time = TTCN_Runtime::now();

incoming_reply(my_reply, reply_time);

2.8.2. Outgoing operations

The timestamps of outgoing port operations (send, call , reply , raise) need to be set in the member
functions outgoing_send, outgoing_call , outgoing_reply and outgoing_raise .

These functions have a float pointer parameter called timestamp_redirect , if the test port was
declared with the realtime clause.

The value pointed to by this parameter will be the one stored in the variable referenced in the
timestamp redirect, if the operation has a timestamp redirect.

If it does not have a timestamp redirect, then this pointer parameter will be NULLBecause of this,
the parameter must always have a null pointer check before it is assigned a value.

It is recommended that the value pointed to by the parameter be set to the current test system time,
which can be queried with TTCN_Runtime::now()

Example:

31

if (timestamp_redirect = NULL) {
E *timestamp_redirect = TTCN_Runtime::now();

}

Because of this extra parameter, adding or removing the realtime clause from a port
will cause already-written C++ code for the port to no longer compile. In these cases

the new parameters must be manually added or removed from the mentioned
functions, or the user-written code copied to newly-generated test port skeletons.

NOTE

[1] The test equipment not necessarily requires a special hardware; it can even be a simple PC with an Ethernet interface.

[2] Test Port parameters have been introduced in version 1.1.pI3

[3] If the same parameter of the same port instance is specified several times in the configuration file, the function set_parameter

will also be called several times.

[4] That is, the port has exactly one mapping and either the port has no connections or the message is explicitly addressed by a

(E) to system statement.

[5] In versions of Test Executor older than 1.1 the event handler function had no parameters. If you want to upgrade a test port
developed for older versions, you should insert this formal parameter list to your event handler both in Test Port header and
source file. Otherwise the compilation of Test Port will fail.

[6] Note that if the port has connections as well, the messages coming from other test components will also be inserted into the
same queue independently from the event handler.

[7] In the example the signatures were defined in a different TTCND3 module named MyExample, as a consequence all types
defined in that module must be prefixed with the C++ namespace name of that module.

32

send

Chapter 3. External Classes

There is currently no C++ skeleton generator for external classes, so any external classes have to be
implemented manually.

External class implementation must abide by the following rules:

¥ The file name, where the external class is declared, must be the name of the external class
followed by .hh. Please note that the name mapping rules described in Mapping of Names and
Identifiers also apply to the class and file name. The implementations of class methods can be in
any C++ source file that is linked to the executable test suite.

¥ The new .hh file must include the generated header file of the TTCN-3 module containing the
external class declaration.

¥ The include to the new .hh file is already in the desired namespace in the generated C++ code, so
no further namespaces are needed around the external class declaration.

¥ The external class must inherit the built-in C++ class OBJEC{Dbject in TTCN-3).
¥ The C++ equivalents of all functions in the TTCN-3 external function declaration must be virtual.
¥ The class must also have a virtual destructor (even if it is empty).

¥ For more information about function parameters and return values of class types see Object
References.

3.1. Example

Example.ttcn:

type external class ExternalClass {
E public external function f_ext(in integer x) return charstring;
E external function f_ext2(inout OtherClass p);

}

ExternalClass.hh:

33

#include "Example.hh"

#ifndef EXTERNALCLASS_HH
#define EXTERNALCLASS_HH

/I NOTE: no namespace specification needed, since the 'include’ command is
/[already in the desired namespace!

class ExternalClass : public OBJECT {
public:
E virtual CHARSTRING f__ext(const INTEGER& X);

protected:
E virtual void f__ext2(OBJECT _REF<OtherClass>& p);

public:
E virtual ~ExternalClass() { }

/I additional members and methods
|3

#endif

ExternalClass.cc:

#include "ExternalClass.hh"
namespace Example {

CHARSTRING ExternalClass::f __ext(const INTEGER& Xx)
{

E // method implementation

}

void ExternalClass::f _ext2(OBJECT_REF<OtherClass>& p)
{

E // method implementation

}
}

If external class methods are implemented in a different C++ file, than the
NOTE mentioned new .hh file (such as ExternalClass.cc in this case), then they need to be
placed in the TTCN-3 moduleOs namespace.

34

Chapter 4. Logger Plug-ins

4.1. Implementing Logger Plug-ins

All logger plug-ins must implement the ILoggerPlugin interface class in ILoggerPlugin.hh in
${TTCN3_DIR}/include Each plug-in should provide some essential information on itself and should
implement some basic functions:

The name (name_, plugin_name()) of the plugin. To be able to reference the plugin (for example for
configuration). Additional information about the plug-in (help_, plugin_help())

The minimum APl version number the plug-in is compatible with (major_version_,
major_version() , minor_version_, minor_version())

Each plug-in must have an initialization (init()) and deinitialization (fini()) routine, which are
called at the begin and end of the plug-inOs lifecycle. The same functionality can be implemented in
the plug-inOs constructor and destructor as well.

The plug-in could be asked, whether itOs configured or not (is_configured()) . For example the file is
already opened, the database connection is set up etc. Depending on this information event
buffering can be enabled or disabled.

One plug-in should provide log2str() functionality. The is_log2str_capable() function should be
overridden to return true. At the moment itOs not possible to change the default behavior and
returning true will not have an effect except a warning.

The logger plug-ins receive the log events via the log() function. The details about event handling
can be found in 3.3.

The generated, runtime specific (load-test or function-test) header file TitanLoggerApi.hh needs to be
included by every logger plug-in depending on the runtime it is compiled for. These header files can

be found in ${TTCN3_DIR}/include/{RT1/RT2} An example to handle these include files in a logger
plug-inOs code:

#ifndef TITAN_RUNTIME_2
#include "RT1/TitanLoggerApi.hh"
#else

#include "RT2/TitanLoggerApi.hh"

#endif

Unfortunately, the dlopen() API is a C API, not a C++ API, but each logger plug-in is a class, which
needs to be instantiated. To resolve this, the logger plug-ins are always instantiated and destroyed
through C factory functions. These functions are mandatory for all logger plug-ins and they must
follow C-style linkage rules. Otherwise, the function names would be mangled by the C++ compiler,

35

using its own, implementation dependent mangling mechanism, and disym() and such functions
would not be able to locate the correct symbol in the SOs of the logger plug-ins. These functions
look pretty simple:

#ifdef __ cplusplus
extern "C"

{

E ILoggerPlugin *create_plugin()

E {return new MyPlugin(); }

E void destroy_plugin(ILoggerPlugin *plugin)
E {delete plugin; plugin = NULL; }

}

#endif

4.2. Building Logger Plug-ins

The generated, runtime specific (load-test or function-test) header file TitanLoggerApi.hh needs to be
included by every logger plug-in depending on the runtime it is compiled for. These header files can

be found in ${TTCN3_DIR}/include/{RT1/RT2}and this directory must be present (for example as part

of CPPFLAGISthe Makefile) while compiling the logger plug-ins.

To make logger plug-ins dynamically loadable at runtime the logger plug-ins need to be built as
shared libraries. Physically SOs (.s0) on Unix and Linux platforms, DLLs (.dll) on Cygwin and
Windows platforms. A HOWTO on building shared libraries can be found at David A. Wheeler,
Program Library HOWTO . A quick summary:

All the sources of the logger plug-ins need to be compiled with DfPIC for example add CXXFLAGS +=
-fPIC into the Makefile or command line.

The linker should be instructed to create a shared library instead of an executable with the Dshared
flag. BfPICis necessary here as well, for example add LDFLAGS += -fPIC Bsharedn the Makefile or
command line.

Another thing to keep in mind is that logger plug-ins need to be linked with the dynamically linked

TITAN runtime libraries (for example libttcn3-dynamic.sol/libttcn3-parallel-dynamic.so or
libttcn3-rt2-dynamic.sol/libttcn3-rt2-parallel-dynamic.so) instead of the static ones (for example
libttcn3.a/libttcn3-parallel.a or libttcn3-rt2.a/libttcn3-rt2-parallel.a). So, if all possible

combinations need to be supported by a logger plug-in, all of the four versions need to be built,
additionally there are naming rules to simplify making a distinction between them:

¥ Single mode, load test runtime. File name must end with ".so".

¥ Single mode, function test runtime. File name must end with "-rt2.so".

¥ Parallel mode, load test runtime. File name must end with "-parallel.so".

¥ Parallel mode, function test runtime. File name must end with "-parallel-rt2.so".

The runtime library linked with a logger plug-in must be selected to match the runtime linked with
the test executable that loads it: if the test executable is linked to libttcn3-dynamic.so , then any

36

http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://tldp.org/HOWTO/Program-Library-HOWTO/index.html

logger plug-ins must also be linked to libttcn3-dynamic.so and not libttcn3-parallel-dynamic.so or
libttcn3-rt2-dynamic.so . To ensure consistency, only a dynamic runtime library will load a logger
plug-in (because a plug-in is always linked to a dynamic runtime library). If a non-dynamic runtime

library is configured to load a logger plug-in, it will cause a runtime error.

Please note that linking a plug-in or any TTCN-3 project with the object files generated from the
TitanLoggerApi or TitanLoggerControl internal modules and using the dynamic libraries of TITAN at
the same time is not recommended and it can lead to various runtime errors.

4.3. Event Handling

The log events are distributed to all active logger plug-ins via a four-parameter callback function
with the following signature:

void log(const TitanLoggerApi:: TitanLogEvent& event, bool
E log_buffered, bool separate_file, bool use_emergency_mask);

The first parameter event is the event itself, the second parameter log_buffered indicates, whether
the event is coming from an internal buffer or not, separate_file and use_emergency_maskre
configuration options for emergency logging. The use_emergency_madiag indicates that the given
event is an emergency event and should be handled in a special way by the plug-ins, the
separate_file flag indicates that all the emergency events should be handled separately (for
example written into a separate file). For more details on emergency logging please check
ProgrammerOs Technical Reference . In this function, the plug-in can handle the log events

individually depending on the eventOs type (that is, the alternative selected in the union
event.logEvent().choice()).

TitanLoggerApi::TitanLogEvent is a generated type defined in TitanLoggerApi.xsd, which can be
found in ${TTCN3_DIR}/include This file contains all the necessary type definitions a logger plug-in
should be aware of. The corresponding header files generated from this XSD file can be found in
${TTCN3_DIR}include/{RT1/RT2} The mapping between TTCN-3 types and C++ types is defined in
Mapping TTCND3 Data Types to C++ Constructs .

4.4. Execution

When a logger plug-in is compiled (the SO is ready) it should be configured in the configuration file.

For details check ProgrammerOs Technical Reference . Additionally, LD_LIBRARY_PASh#uld contain
the directory of the plug-inand ${TTCN3_DIR}/lib as well. If the runtime linker (the loader) is unable

to find any of the given logger plug-ins an error will be given.

37

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
5-mapping_ttcn3_data_types_to_c+\+_constructs.adoc
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

Chapter 5. Encoding and Decoding

This tool is equipped with several standard encoding/decoding mechanisms. A part of these
functions reside in the core library, but the type-dependent part must be generated by the compiler.
In order to reduce the code size and compilation time, the code generation for encoding functions
(separately for different encoders) can be switched off if they are not needed. For details, see
section "Command line syntax" inthe ProgrammerOs Technical Reference .

To make it easier to use the encoding features, a unified common APl was developed. With help of
this API the behaviour of the test executor in different error situations can be set during coding.
There is also a common buffer class. The details of the above mentioned API as well as the specific
features of the certain encoders are explained in the following sections.

5.1. The Common API

The common API for encoders consists of three main parts:

¥ A dummy class named TTCN_EncDe&dhich encapsulates functions regarding error handling.

¥ A buffer class named TTCN_Bufferwhich is used by the encoders to put data in, decoders to get
data from.

¥ The functions needed to encode and decode values.

5.1.1. TTCN_EncDec

TTCN_EncDé&uoplements error handling functions.

Setting Error Behavior

There are lot of error situations during encoding and decoding. The coding functions can be told
what to do if an error arises. To set the behaviour of test executor in a certain error situation the
following function is to be invoked:

void TTCN_EncDec::set_error_behavior(error_type_t, error_behavior_t);

As error_type_t and error_behavior_t are enums defined in TTCN_EncDec class,
WARNING they have to prefixed with the class name and the scope operator (that is
TTCN_EncDeq::

The possible values of error_type t are detailed in the sections describing the different codings.
Some common error types are shown in the table below:

Table 3. Common error types
ET_UNDEF Undefined/unknown error.

ET_UNBOUND Encoding of an unbound value.

38

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

ET_UNDEF Undefined/unknown error.

ET_REPR Representation error (for example, internal representation of
integral numbers).

ET_ENC_ENUM Encoding of an unknown enumerated value.
ET_DEC_ENUM Decoding of an unknown enumerated value.
ET_INCOMPL_MSG Decode error: incomplete message.

ET_INVAL MSG Decode error: invalid message.

ET_CONSTRAINT The value breaks some constraint.

ET_INTERNAL Internal error. Error behaviour cannot be set for this.
ET_ALL All error type. Usable only when setting error behaviour.
ET_NONE No error.

The possible values of error_behavior_t are shown in the table below:

Table 4. Possible values of error_behavior_t

EB_DEFAULT Sets the default error behaviour for the selected error type.
EB_ERROR Raises an error if the selected error type occurs.
EB_WARNING Gives a warning message but tries to continue the operation.
EB_IGNORE Like warning but without the message.

Getting Error Behavior

There are two functions: one for getting the current setting and one for getting the default setting
for a particular error situation.

error_behavior_t TTCN_EncDec::get_error_behavior(error_type_t);
error_behavior t TTCN_EncDec::get_default_error_behavior(error_type_t);

The using of these functions are straightforward: giving a particular error_type_t the function
returns the current or default error_behavior_t for that error situation, respectively.

Checking if an Error Occurred

The last coding-related error and its textual description can be retrieved anytime. Before using a
coding function, it is advisable to clear the "last error". This can be achieved by the following
method:

void TTCN_EncDec::clear_error();

After using some coding functions, it can be checked if an error occurred with this function:

39

error_type_t TTCN_EncDec::get_last_error_type();

This returns the last error, or ET_NONEthere was no error. The string representation of the error
can be requested with the help of this:

const char* TTCN_EncDec::get_error_str();

WARNING The above two functions do not clear the "last error"” flag.

5.1.2. TTCN_Buffer

TTCN Buffer objects are used to store encoded values and to communicate with the coding
functions. If encoding a value, the result will be put in a buffer, from which can be get. In the other
hand, to decode a value, the encoded octet string must be put in a TTCN_Buffer object, and the
decoding functions get their input from that.

void TTCN_Buffer::clear();

Resets the buffer, cleaning up its content, setting the pointers to the beginning of buffer.

void TTCN_Buffer::rewind();

Rewinds the buffer, that is, sets its reading pointer to the beginning of the buffer.

size_t TTCN_Buffer::get_pos() const;

Returns the (reading) position of the buffer.

void TTCN_Buffer::set_pos(size_t pos);

Sets the (reading) position to pos, or to the end of buffer, if pos > get_len()

size_t TTCN_Buffer::get_len() const;

Returns the amount of bytes in the buffer.

const unsigned char* TTCN_Buffer::get_data() const;

Returns a pointer that points to the beginning of the buffer. You can read out count bytes beginning
from this address, where count is the value returned by the get_len() member function.

40

size_t TTCN_Buffer::get_read_len() const;

Returns how many bytes are in the buffer to read.

const unsigned char* TTCN_Buffer::get_read_data() const;

Returns a pointer which points to the read position of data in the buffer. count bytes can be read out
beginning from this address, where count is the value returned by the get_read_len() member
function.

void TTCN_Buffer::put_c(const unsigned char c);

Appends the byte c to the end of buffer.

void TTCN_Buffer::put_s(const size_t len, const unsigned char *s);

Writes a string of bytes to the end of buffer, where len is the amount of bytes, s is a pointer to the
data to be written.

void TTCN_Buffer::put_os(const OCTETSTRING& 0s);

Appends the content of the octet string to the buffer.

Sometimes it is useful to copy data directly into a buffer. In this case, the buffer must be told the
maximum number of bytes to be written. So the buffer can resize its data area. This can be done
with the following function:

void TTCN_Buffer::get_end(unsigned char*& end_ptr, size t& end_len);

Parameter end_len is an in-out parameter: you tell how many bytes you want to write, and the
returned value is equal to or greater than the requested. Parameter end_ptr is an out parameter. So
up to end_len bytes can be written beginning from end_ptr. After writing also increase_length()
must be called.

void TTCN_Buffer::increase_length(size_t count);

After writing bytes directly to the end of buffer using the pointer returned by get_end() method, the
buffer must be told how many bytes have been written. This can be done by this function.

void TTCN_Buffer::cut();

41

Cuts (removes) the bytes between the beginning of the buffer and the read position. After calling
this, the read position will be the beginning of buffer. As this function manipulates the internal
data, pointers referencing to data inside the buffer will be invalid.

void TTCN_Buffer::cut_end();

Cuts (removes) the bytes between the read position and the end of the buffer. After calling this, the
read position remains unchanged (that is, it will point to the end of the truncated buffer). As this
function manipulates the internal data, pointers referencing to data inside the buffer will be
invalid.

boolean TTCN_Buffer::contains_complete_TLV();

Returns TRUEf the buffer contains a complete TLV, otherwise it returns FALSE Useful when
decoding BER streams, and the data is coming in chunks. With the help of this, you can check
before decoding whether the message is complete.

5.1.3. Invoking the Coding Functions

Every type class has members like these:

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod, ...) const;

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec:coding_t p_cod, ...);

Parameter p_td is a special type descriptor. Each type has its own descriptor, which contains the
name of the type, and a lot of information used by the different encoding mechanisms. The names

of the descriptors come from the name of the types: the appropriate type descriptor for type XXX is
XXX_descr._

Parameter p_buf contains the encoded value. For details about using it, please consult the previous
subsection.

Parameter p_codis the desired coding mechanism. As coding_t is defined in TTCN_EncDeits value
must be prefixed with TTCN_EncDec::For the time being, this parameter may have one of the
following values:

¥ CT_BER - BER coding;

¥ CT_RAW - RAW coding;

¥ CT_TEXT - TEXT coding;

¥ CT_XER - XML coding;

¥ CT_JSON - JSON coding;

¥ CT_OER - OER coding;

42

The optional E parameter(s) are depending on the chosen coding.

5.2. BER

The encoding rules defined in Information TechnologyASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished can be used to encode
and/or decode the values of ASN.1 types. There are three methods defined in the referenced
document: BER, CER and DER (Basic, Canonical and Distinguished Encoding Rules). While the BER
gives a lot of options to the sender (that is, to the encoder), the CER and DER select just one
encoding from those allowed by the BER, eliminating all of the sender options. In other words, CER

(and also DER) is a subset of BER. Any value encoded by CER or DER can be decoded using BER, but
it is not true in the other direction.

In this section it is assumed that the reader has basic knowledge about BER, TLVs, tags, length forms
and other items defined in Information TechnologyASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished

This tool is capable of encoding values in CER or DER, and uses the BER while decoding . The tags
are handled quite separated from the types, giving extra freedom to the user when encoding only

one component of a compound type. Let us suppose we have a large SEQUENCE with automatic tags
(that is, context-specific implicit tags 1, 2, E), the third component is "[3] Other-sequence" . Then we
have the possibility to encode only this field using SEQUENCE-tag. (Implementation details and
examples follow in next sections.)

5.2.1. Error Situations
In addition to error situations mentioned in The Common API , these can occur during BER-coding:

Table 5. BER-coding errors

ET_INCOMPL_ANY Encoding of an ASN ANY value which does not contain a valid BER
TLV.

ET LEN_FORM During decoding: the received message has a non-acceptable length
form.

ET_TAG During decoding: unexpected tag.

ET_SUPERFL During decoding: superfluous part detected. This can be superfluous
TLV at the end of a constructed TLV.

ET_EXTENSION During decoding: there was something in the extension (for
example: in ASN.1 ellipsis). This is not supported in the current
version.

ET_DEC_DUPFLD While decoding a SET: duplicated field (value for the given field
already received).

ET_DEC_MISSFLD While decoding a SET: missing field (value for the given field not
received).

ET_DEC_OPENTYPE Cannot decode an opentype (broken component relation constraint).

43

https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S
https://www.itu.int/rec/T-REC-X.690-200811-S

ET_DEC_UCSTR While decoding a universal charstring: Malformed sequence.

5.2.2. API

The Application Programming Interface for ASN.1 type encoding and decoding is described in the
following.

Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod, unsigned int p_BER_coding) const;

The parameter p_cod must be set to TTCN_EncDec::CT_BERe parameter p_BER_codings used to
choose between CER and DER.

BER_ENCODE_€ERR coding.

BER_ENCODE_®BER coding.

Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod, unsigned int p_len_form);

The parameter p_cod must be set to TTCN_EncDec::CT_BEFhe parameter p_len_form determines
which length forms are accepted.

¥ BER_ACCEPT_SHORT
Short form.

¥ BER_ACCEPT_LONG
Long form.

¥ BER_ACCEPT_INDEFINITE
Indefinite form.

¥ BER_ACCEPT_DEFINITE
Short and long form.

¥ BER_ACCEPT_ALL

All form.

44

5.2.3. Example

Let us assume that we have an ASN.1 module named MyASNvhich contains a type named
ErrorReturn , and we have a TTCND3 module which imports this type. This module contains also two
ports:

type port MyPortl message

type port MyPortl message
{’\

E out ErrorReturn;

E in octetstring;

}

type port MyPort2 message
{

E out octetstring;

E in ErrorReturn;

}

Then we can complete the port skeleton generated by the compiler:

void MyPortl::outgoing_send(const MyASN::ErrorReturn& send_par)
{

E TTCN_Buffer buf;

E send_par.encode(MyASN::ErrorReturn_descr_, buf,

E TTCN_EncDec::CT_BER, BER_ENCODE_DER);

E OCTETSTRING encodeddata(buf.get_len(), buf.get_data());

E incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)

{

E TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_ALL,

E TTCN_EncDec::EB_WARNING);

E TTCN_Buffer buf;

E buf.put_os(send_par);

E MyASN::ErrorReturn pdu;

E pdu.decode(MyASN::ErrorReturn_descr_, buf, TTCN_EncDec::CT_BER,

E BER_ACCEPT_ALL);
E incoming_message(pdu);
}

5.3. RAW

You can use the encoding rules defined in the section "RAW encoder and decoder" in the
ProgrammerOs Technical Reference to encode and decode the following TTCND3 types:

45

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

¥ boolean

¥ integer

¥ float

¥ bitstring

¥ octetstring

¥ charstring

¥ hexstring

¥ enumerated

¥ record

¥ set

¥ union

¥ record of

¥ set of
The compiler will produce code capable of RAW encoding/decoding for compound types if they
have at least one variant attribute.
When a compound type is only used internally or it is never RAW encoded/decoded then the
attribute variant has to be omitted.

When a type can be RAW encoded/decoded but with default specification then the empty variant
specification can be used: variant ™

5.3.1. Error Situations

Table 6. RAW-coding errors

ET_LEN_ERR During encoding: Not enough length specified in FIELDLENGTH to
encode the value. During decoding: the received message is shorter
than expected.

ET_SIGN_ERR Unsigned encoding of a negative number.

ET_FLOAT_NAN Not a Number float value has been received.

ET_FLOAT_TR The float value will be truncated during double to single precision
conversion.

5.3.2. API

The C++ Application Programming Interface for RAW encoding and decoding is described in the
following. It can be used for example in test port implementation, in external function
implementation.

Encoding

46

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod) const;

The parameter p_codmust be setto TTCN_EncDec::CT_RAW

Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod);

The parameter p_codmust be setto TTCN_EncDec::CT_RAW

5.3.3. Example

Let us assume that we have a TTCND3 module which contains a type named ProtocolPdu, and this
module contains also two ports:

type port MyPortl message
{

E out ProtocolPdu;
E in octetstring;

}

type port MyPort2 message
{

E out octetstring;
E in ProtocolPdu;

}

Then we can complete the port skeleton generated by the compiler as follows:

a7

void MyPortl1::outgoing_send(const ProtocolPdu& send_par)

{
E TTCN_Buffer buf;

E send_par.encode(ProtocolPdu_descr_, buf,
E TTCN_EncDec::CT_RAW);
E OCTETSTRING encodeddata(buf.get_len(), buf.get_data());

E incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)

{
E TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_ALL,

E TTCN_EncDec::EB_WARNING);

E TTCN_Buffer buf;

E buf.put_os(send_par);

E ProtocolPdu pdu;

E pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_RAW);

E incoming_message(pdu);

}

5.4. TEXT

You can use the encoding rules defined in the section "TEXT encoder, decoder” in the ProgrammerQOs
Technical Reference to encode and decode the following TTCND3 types:

¥ boolean

¥ integer

¥ charstring

¥ enumerated

¥ record

¥ set

¥ union

¥ record of

¥ set of
The compiler will produce code capable of TEXT encoding/decoding for compound types if they
have at least one variant attribute or it is used within a compound type which has a TEXT attribute.
If you need a compound type that is only used internally or it is never RAW encoded/decoded then
you have to omit the variant attribute. If you need a type which can be TEXT encoded/decoded but

with default specification then the empty variant specification can be used: variant
"TEXT_CODING()"

48

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

5.4.1. Error Situations

ET_TOKEN_ERTRe specified token is not found during decoding

5.4.2. API

The Application Programming Interface for TEXT encoding and decoding is described in the
following.

Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod) const;

The parameter p_codmust be setto TTCN_EncDec::CT_TEXT

Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod);

The parameter p_codmust be setto TTCN_EncDec::CT_TEXT

5.4.3. Example

Let us assume that we have a TTCND3 module which contains a type named ProtocolPdu, and this

module contains also two ports:

type port MyPortl message
{

E out ProtocolPdu;
E in charstring;

}

type port MyPort2 message
{

E out charstring;
E in ProtocolPdu;

}

Then we can complete the port skeleton generated by the compiler:

49

void MyPortl1::outgoing_send(const ProtocolPdu& send_par)

{
E TTCN_Buffer buf;

E send_par.encode(ProtocolPdu_descr_, buf,
E TTCN_EncDec::CT_TEXT);
E CHARSTRING encodeddata(buf.get_len(), buf.get_data());

E incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const CHARSTRING& send_par)

{
E TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_ALL,

E TTCN_EncDec::EB_WARNING);

E TTCN_Buffer buf;

E buf.put_cs(send_par);

E ProtocolPdu pdu;

E pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_TEXT);

E incoming_message(pdu);

}

5.5. XML Encoding (XER)

The encoding rules defined by Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3. Part 9: Using XML Schema with TTCND3 European can be used to
encode and/or decode values of ASN.1 and TTCN-3 types. This tool is capable of encoding and
decoding Basic XER (BXER), Canonical XER (CXER) and Extended XER (EXER). Values of all ASN.1
types can be encoded, but only BXER and CXER are available for them because parsing XML
Encoding Instructions in ASN.1 files is not implemented.

The following built-in TTCN-3 types can be encoded in XML:

¥ boolean

¥ integer

¥ float

¥ bitstring

¥ octetstring

¥ hexstring

¥ objid

¥ charstring

¥ universal charstring

¥ verdicttype

The following user-defined types can be encoded in XML:

50

https://www.etsi.org/deliver/etsi_ES/201800_201899/20187309/04.05.01_60/es_20187309v040501p.pdf
https://www.etsi.org/deliver/etsi_ES/201800_201899/20187309/04.05.01_60/es_20187309v040501p.pdf

¥ enumerated types
¥ record, set and union types, if all components can be encoded.

¥ record of and set of types, if the type of the element can be encoded.

The encoder and the decoder are working with XML data encoded in UTF-8 (described in UTF-8, a
transformation format of ISO 10646), stored in an object of type TTCN_buffer Although the contents

of this object can be retrieved (using the overloads of the get_string function) as an instance of
OCTETSTRINGHARSTRING UNIVERSAL_CHARSTRINS recommended to use only the OCTETSTRING
representation. CHARSTRINKSnot recommended, because UTF-8 is an 8-bit encoding so the buffer

may contain bytes with values over 127, which are not valid characters for a TTCN-3 charstring
(which is implemented by = CHARSTRIN&ee Charstring). UNIVERSAL_CHARSTRiIN& not be used
because its internal representation is not UTF-8.

5.5.1. Error Situations

In addition to error situations mentioned in The Common API, the following can occur during
XMLcoding:

Table 7. XER coding errors

ET_TAG Incorrect (unexpected) XML tag found during
decoding

5.5.2. API

The Application Programming Interface for XML encoding and decoding is described in the
following.

Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod, unsigned int p_XER_coding) const;

The parameter p_cod must be set to TTCN_EncDec::CT_XEFhe parameter p_XER_codings used to
choose between BXER, CXER and EXER:

XER_BASIEBasic XER (BXER)
XER_CANONIGACanonical XER (CXER)

XER_EXTENDBEEXtended XER (EXER)

Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod, unsigned int p_XER_coding);

51

https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629

The parameter p_cod must be set to TTCN_EncDec::CT_XERie parameter p_XER_codings used to
choose between BXER, CXER and EXER:

XER_BASIEBasic XER (BXER)
XER_CANONIGACanonical XER (CXER)

XER_EXTENBHEXtended XER (EXER)

5.5.3. Example

Let us assume that we have a TTCNB3 module which contains a type named ProtocolPdu, and this
module contains also two ports:

void MyPortl::outgoing_send(const ProtocolPdu& send_par)

{
E TTCN_Buffer buf;

E send_par.encode(ProtocolPdu_descr_, buf,
E TTCN_EncDec::.CT_XER, XER_EXTENDED);
E OCTETSTRING encodeddata(buf.get_len(), buf.get_data());

E incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)

{
E TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_ALL,

E TTCN_EncDec::EB_WARNING);

E TTCN_Buffer buf;

E buf.put_os(send_par);

E ProtocolPdu pdu;

E pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_XER, XER_EXTENDED);

E incoming_message(pdu);

}

5.6. JSON

The encoding rules defined in the section "JSON Encoder and Decoder" of the ProgrammerOs
Technical Reference can be used to encode and decode the following TTCND3 types:

¥ anytype

¥ array

¥ bitstring

¥ boolean

¥ charstring

¥ enumerated

52

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

¥ float

¥ hexstring

¥ integer

¥ objid

¥ octetstring

¥ record’, set

¥ record of", set of

¥ union

¥ universal charstring

¥ verdicttype
The rules also apply to the following ASN.1 types (if imported to a TTCN-3 module):

¥ ANY

¥ BIT STRING

¥ BOOLEAN

¥ BMPString

¥ CHOICE, open type (in instances of parameterized types)
¥ ENUMERATED

¥ GeneralString

¥ GraphicString

¥ |IA5String

¥ INTEGER

¥ NULL

¥ NumericString

¥ OBJECT IDENTIFIER
¥ OCTET STRING

¥ PrintableString

¥ RELATIVE -OID

¥ SEQUENCE, SET

¥ SEQUENCE OF, SET OF
¥ TeletexString

¥ UniversalString

¥ UTF8String

¥ VideotexString

¥ VisibleString

The compiler will produce code capable of JSON encoding/decoding for compound types if they

have at least one JSON variant attribute or the encode "JSON'attribute (and, for compound types, all
fields and elements of compound types also have a JSON variant attribute or the encode "JSON"
attribute).

The encoder and the decoder work with JSON data encoded in UTF-8 (described in UTF-8, a
transformation format of ISO 10646), stored in an object of type TTCN_buffer Although the contents

of this object can be retrieved (using the overloads of the get_string function) as an instance of
OCTETSTRINGHARSTRINGE UNIVERSAL_CHARSTHIN& recommended to use only the OCTETSTRING
representation. CHARSTRINKGnot recommended, because UTF-8 is an 8-bit encoding so the buffer

may contain bytes with values over 127, which are not valid characters for a TTCN-3 charstring
(which is implemented by = CHARSTRIN&ee Charstring). UNIVERSAL_CHARSTRiIN& not be used
because its internal representation is not UTF-8.

5.6.1. Error Situations

There are no extra error situations apart from the ones in The Common API .

5.6.2. API

The Application Programming Interface for JSON encoding and decoding is described in the
following.

Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod) const;

The parameter p_codmust be setto TTCN_EncDec::CT_JSON

Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod);

The parameter p_codmust be setto TTCN_EncDec::CT_JSON

5.6.3. Example

Let us assume that we have a TTCND3 module which contains a type named ProtocolPdu, and this
module also contains two ports:

54

https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3629
6-mapping_ttcn3_data_types_to_c+\+_constructs.pdf#Charstring

type port MyPortl message
{

E out ProtocolPdu;
E in octetstring;

}

type port MyPort2 message
{

E out octetstring;
E in ProtocolPdu:

}

Then we can complete the port skeleton generated by the compiler:

void MyPortl1::outgoing_send(const ProtocolPdu& send_par)

{
E TTCN_Buffer buf;

E send_par.encode(ProtocolPdu_descr_, buf,
E TTCN_EncDec::CT_JSON);
E OCTETSTRING encodeddata(buf.get_len(), buf.get_data());

E incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)

{

E TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_ALL,

E TTCN_EncDec::EB_WARNING);

E TTCN_Buffer buf;

E buf.put_os(send_par);

E ProtocolPdu pdu;

E pdu.decode(ProtocolPdu_descr_, buf, TTCN_EncDec::CT_JSON);

E incoming_message(pdu);

}

5.7. OER

The encoding rules defined in the section "OER Encoder and Decoder" of the ProgrammerQOs
Technical Reference can be used to encode and/or decode the values of ASN.1 types.

5.7.1. Error Situations

There are no extra error situations apart from the ones in The Common API .

55

https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide
https://github.com/eclipse/titan.core/tree/master/usrguide/referenceguide

5.7.2. API

The Application Programming Interface for ASN.1 type encoding and decoding is described in the
following.

Encoding

void encode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod) const;

The parameter p_codmust be setto TTCN_EncDec::CT_OER

Decoding

void decode(const TTCN_Typedescriptor_t& p_td, TTCN_Buffer& p_buf,
E TTCN_EncDec::coding_t p_cod);

The parameter p_codmust be setto TTCN_EncDec::CT_OER

5.7.3. Example

Let us assume that we have an ASN.1 module named MyASNvhich contains a type named
ErrorReturn , and we have a TTCND3 module which imports this type. This module also contains two
ports:

type port MyPortl message
{

E out ErrorReturn;
E in octetstring;

}

type port MyPort2 message
{

E out octetstring;
E in ErrorReturn;

}

Then we can complete the port skeleton generated by the compiler:

56

void MyPortl::outgoing_send(const MyASN::ErrorReturn& send_par)

{
E TTCN_Buffer buf;

E send_par.encode(MyASN::ErrorReturn_descr_, buf,

E TTCN_EncDec::CT_OER);

E OCTETSTRING encodeddata(buf.get_len(), buf.get_data());
E incoming_message(encodeddata);

}

void MyPort2::outgoing_send(const OCTETSTRING& send_par)

{

E TTCN_EncDec::set_error_behavior(TTCN_EncDec::ET_ALL,

E TTCN_EncDec::EB_WARNING);

E TTCN_Buffer buf;

E buf.put_os(send_par);

E MyASN::ErrorReturn pdu;

E pdu.decode(MyASN::ErrorReturn_descr_, buf, TTCN_EncDec::CT_OER);
E incoming_message(pdu);

}

[8] Though the decoder can be forced to accept only certain length forms (short, long, indefinite or any combination of these.

Chapter 6. Mapping TTCND3 Data Types to
C++ Constructs

The TTCNB3 language elements of the test suite are individually mapped into more or less
equivalent C++ constructs. The data types are mapped to C++ classes, the test cases become C++
functions, and so on. In order to write a Test Port, it is inevitable to be familiar with the internal
representation format of TTCND3 data types and values. This section gives an overview about the
data types and their equivalent C++ constructs.

6.1. Mapping of Names and Identifiers

In order to identify the TTCND3 language elements in the generated C++ program properly, the
names of test suite are translated to C++ identifiers according to the following simple rules.

If the TTCND3 identifier does not contain any underscore (_) character, its equivalent C++ identifier
will be the same. For example, the TTCND3 variable MyVarwill be translated to a C++ variable called
MyVar

If the TTCND3 identifier contains one or more underscore characters, each underscore character
will be duplicated in the C++ identifier. So the TTCND3 identifier My_Long_Namell be mapped to a
C++ identifier called My __Long___Name

The idea behind this name mapping is that we may freely use the C++ identifiers containing one
underscore character in the generated code and in the Test Ports as well. Otherwise name clashes
can always happen because the name space of TTCND3 and C++ is identical. Furthermore, the
generated C++ language elements fulfill the condition that the scope of a translated C++ identifier is
identical as the scope of the original TTCND3 identifier.

The identifiers that are keywords of C or C++ but not keywords in TTCNB3 are mapped to
themselves, but a single underscore character is appended at the end (for example typedef becomes
typedef). The same rule applies to the all-uppercase identifiers that are used in the Base Library:
identifier INTEGER TTCND3 becomes INTEGERn C++, TRUE" is mapped to TRUE_etc.

Here is the complete list (in alphabetical order) of the identifiers that are handled in such special

way:asm, auto, bitand, bitor, bool, break, case, class, compl, continue, delete, double, enum, explicit,

export, friend, inline, int, ischosen, long, main, mutable, namespace, new, operator, private,
protected, public, register, short, signed, static, stderr, stdin, stdout, struct, switch, this, throw, try,

typedef, typeid, typename, unsigned, using, virtual, void, volatile, ADDRESS, BITSTRING, BOOLEAN,
CHAR, CHARSTRING, COMPONENT, DEFAULT, ERROR, FAIL, FALSE, FLOAT, HEXSTRING, INCONC,
INTEGER, NONE, OBJID, OCTETSTRING, PASS, PORT, TIMER, TRUE, VERDICTTYPE.

The identifiers that are the names of common preprocessor macros of the C library (such as
putchar, errno or NUL) should be avoided in TTCND3 modules. The name clashes with macros can
cause mysterious compilation error messages.

Note that these name mapping rules apply to all TTCNDB3 identifiers, including module, Test Port,
type, field, variable and function names.

58

By default, from version 1.2.pl0 the compiler does NOT duplicate the
WARNING underscores in output file names and file references (for example when
handling imports).

6.2. Namespaces

The compiler generates a C++ namespace for every TTCND3 and ASN.1 module. All C++ definitions
that belong to the module (including Test Port classes and external functions) are placed in that
namespace. The name of the namespace is derived from the module identifier according to the
rules described in Mapping of Names and Identifiers

The definitions of the TTCND3 Base Library do not use any namespace.

When accessing a C++ entity that belongs to a different module than the referring Test Port or
external function is in the reference has to be prefixed with the namespace of the referenced

module. For example, to access the C++ class that realizes type MyTypealefined in module MyExamplel
from a Test Port that belongs to module MyExample2the reference shall be written as
MyExamplel::MyType

6.3. Predefined TTCND3 Data Types

There are some basic data types in TTCND3 that have no equivalent data types in language C/C++
(for example bitstring, verdicttype). Other types have C++ equivalent, but the TTCND3 executor must
know whether a variable has a valid value or not because sending an unbound value must result in

a dynamic test case error. Thus, in the TTCND3 Base Library all basic data types of TTCND3 were
implemented as C++ classes. This section describes the member functions of these classes.

6.3.1. Integer

The TTCND3 type integer is implemented in class INTEGER
The class INTEGERas the following public member functions:

Table 8. Public member functions of the class INTEGER

Member functions Notes
INTEGER() Initializes to unbound value.
INTEGER(int) Initializes to a given value.
Constructors INTEGER(const INTEGER& Copy constructor.
explicit INTEGER(const char *) |nitializes with the (NUL
terminated) string
representation of an integer.
Destructor *INTEGER()
INTEGER() Initializes to unbound value.
Assignment operators
d P INTEGER() Initializes to unbound value.

59

